Glikoz Oksidaz Enzimi Mekanizması ve Süt Ürünlerinde Probiyotik Bakterilerin Gelişimi Üzerine Etkisi

sayi26-1.pdf (1 B)

Glikoz Oksidaz Enzimi Mekanizması ve Süt Ürünlerinde Probiyotik Bakterilerin Gelişimi Üzerine Etkisi

Amaç: Probiyotik bakterilerin gelişimi için uygun ortama sahip fonksiyonel süt ürünleri düzenli olarak tüketildiğinde bağırsak mikrobiyotası ve bağışıklık sistemi üzerinde olumlu etkiler göstermektedir. Probiyotik ürünlerin sağlığı geliştirici faydaları raf ömrü süresince bakteri canlılığının belli sayıda korunması ile sağlanmaktadır. Bu sebeple, gıdanın fonksiyonel özellikleri geliştirilirken aynı zamanda canlı mikroorganizmaların varlığının da sürdürülebilmesi için glikoz oksidaz enzimi ilavesi teknolojik olarak uygulanan yöntemlerden birisidir. Bu derlemede, glikoz oksidaz enzimi mekanizmasının, gıdalarda uygulamaları, foksiyonel süt ürünlerinde probiyotik bakterilerin gelişimi ve aktivitesinin korunması üzerine etkileri açıklanmaktadır.

References

  • Afjeh, M.E.A., Pourahmad, R., Akbari-Adergani, B. and Azin, M. (2019). Use of glucose oxidase immobilized on magnetic chitosan nanoparticles in probiotic drinking yogurt. Food Science of Animal Resources, 39(1): 73-83.
  • Akin, M.B. and Dasnik, F. (2015). Effects of ascorbic acid and glucose oxidase levels on the viability of probiotic bacteria and the physical and sensory characteristics in symbiotic ice-cream. Mljekarstvo, 65(2): 121-129.
  • Bao, J., Furumoto, K., Fukunaga, K. and Nakao, K. (2001). A kinetic study on air oxidation of glucose catalyzed by immobilized glucose oxidase for production of calcium gluconate. Biochemical Engineering Journal, 8(2): 91-102.
  • Bao, J., Furumoto, K., Yoshimoto, M., Fukunaga, K. and Nakao, K. (2003). Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochemical Engineering Journal, 13(1): 69-72.
  • Batista, A.L., Silva, R., Cappato, L.P., Almada, C.N., Garcia, R.K., Silva, M.C. and Cruz, A. G. (2015). Quality parameters of probiotic yogurt added to glucose oxidase compared to commercial products through microbiological, physical-chemical and metabolic activity analyses. Food Research International, 7 (3): 627-635.
  • Biyela, B.N.E., Du Toit, W.J., Divol, B., Malherbe, D.F. and Van Rensburg, P. (2009). The production of reduced-alcohol wines using Gluzyme Monor 10.000 BG-treated grape juice. South African Journal of Enology and Viticulture, 30(2): 124-132.
  • Blandino, A., Macı́as, M. and Cantero, D. (2002). Modelling and simulation of a bienzymatic reaction system co-immobilised within hydrogel-membrane liquid-core capsules. Enzyme and Microbial Technology, 31(4): 556-565.
  • Castellari, M., Matricardi, L., Arfelli, G., Carpi, G. and Galassi, S. (2000). Effects of high hydrostatic pressure processing and of glucose oxidase-catalase addition on the color stability and sensorial score of grape juice. Food Science and Technology International, 6(1): 17-23.
  • Champagne, C.P., Gomes da Cruz, A. and Daga, M. (2018). Strategies to improve the functionality of probiotics in supplements and foods. Current Opinion in Food Science, 22: 160-166.
  • Chang, C.H. and Zhao X.H. (2012). In vitro digestibility and rheological properties of caseinates treated by an oxidative system containing horseradish peroxidase, glucose oxidase and glucose. International Dairy Journal, 27(1-2): 47-52.
  • Clarke, K.G., Johnstone-Robertson, M., Price, B. and Harrison, S.T.L. (2006). Location of glucose oxidase during production by Aspergillus niger. Applied microbiology and biotechnology, 70(1): 72-77.
  • Corcoran, B.M., Stanton, C., Fitzgerald, G. and Ross, R.P. (2008). Life under stress: The probiotic stress response and how it may be manipulated. Current Pharmaceutical Design, 14(14): 1382-1399.
  • Cruz, A.G, Walter, E.H.M., Cadena, R.S., Faria, J.A.F., Bolini, H.M.A. and Sant’Ana, A. (2010b). Survival analysis methodology to predict the shelf-life of probiotic flavored yoghurt. Food Research International, 43(5): 1444-1448.
  • Cruz, A.G., Antunes, A.E.C., Sousa, A.L.O.P., Faria, J.A.F. and Saad, S.M.I. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42(9): 1233-1239. Cruz, A.G., Cadena, R.S., Faria, J.A., Bolini, H.M., Dantas, C., Ferreira, M.M. and Deliza, R. (2012b). Parafac: Adjustment for modeling consumer study covering probiotic and conventional yogurt. Food Research International, 45(1): 211-215.
  • Cruz, A.G., Cadena, R.S., Faria, J.A., Oliveira, C.A., Cavalcanti, R.N., Bona, E., Bolini, M.A. and Da Silva, M.A.A. (2011). Consumer acceptability and purchase intent of probiotic yoghurt with added glucose oxidase using sensometrics, artificial neural networks and logistic regression. International Journal of Dairy Technology, 64(4): 549-556.
  • Cruz, A.G., Castro, W.F., Faria, J., Bolini, H.M.A., Celeghini, R.M.S., Raices, R.S.L., Oliveira, C.A.F., Freitas, M.Q., Conte Junior, C.A. and Mársico, E.T. (2013). Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage. Food Research International, 51(2): 723-728.
  • Cruz, A.G., Castro, W.F., Faria, J.A.F., Bogusz, S., Granato, D. and Celeguini, R.M.S. (2012c). Glucose oxidase: A potential option to decrease the oxidative stress in stirred probiotic yogurt. LWT – Food Science and Technology, 47(2): 512-515.
  • Cruz, A.G., Castro, W.F., Faria, J.A.F., Lollo, P.C.B., Amaya-Farfán, J., Freitas, M.Q., Rodrigues, D., Oliveira, C.A.F. and Godoy, H.T. (2012a). Probiotic yogurts manufactured with increased glucose oxidase levels: Postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds. Journal of Dairy Science, 95(5): 2261-2269.
  • Cruz, A.G., Faria, J.A.F. and Van Dender, A.G.F. (2007). Packaging system and probiotic dairy foods. Food Research International, 40(8): 951-956.
  • Cruz, A.G., Faria, J.A.F., Walter, E.H.M., Andrade, R.R., Cavalcanti, R.N., Oliveira, C.A.F. and Granato, D. (2010a). Processing optimization of probiotic yoghurt containing glucose oxidase using the response surface methodology. Journal of Dairy Science, 93 (11): 5059-5068.
  • Dahm, L. (2006). Enzymes and cultures. Dairy Field, 189(6): 73.
  • Ebel, B., Martin, F., Le, L.D.T., Gervais, P. and Cachon, R. (2011). Use of gases to improve survival of Bifidobacterium bifidum by modifying redox potential in fermented milk. Journal of Dairy Science, 94(5): 2185-2191.
  • Feng, T. and Wang J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes, 12(1): 1801944.
  • Fernandes, P. (2018). Enzymatic Processing in The Food Industry. Reference Module in Food Science, 1st ed., Ed: G. Smithers. Elsevier, Portugal, pp.1-11.
  • Figueroa-González, I., Quijano, G., Ramírez, G. and Cruz-Guerrero, A. (2011). Probiotics and prebiotics-Perspectives and challenges. Journal of the Science of Food and Agriculture, 91(8): 1341-1348.
  • Giraffa, G. (2012). Selection and design of lactic acid bacteria probiotic cultures. Engineering in Life Sciences, 12(4): 391-398.
  • Godjevargova, T., Dayal, R. and Marinov, I. (2004a). Simultaneous covalent immobilization of glucose oxidase and catalase onto chemically modified acrylonitrile copolymer membranes. Journal of Applied Polymer Science, 91(6): 4057-4063.
  • Godjevargova, T., Dayal, R. and Turmanova, S. (2004b). Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anionexchange membrane. Macromolecular Bioscience, 4(10): 950-956.
  • Goodsell, D.S. (2006). Glucose oxidase. Molecule of the month. PCSB Protein Data Bank.
  • Govender, M., Choonara, Y.K., Kumar, P., du Toit, L.C., van Vuuren, S. ve Pillay, S., 2014. A review of theadvancements in probiotic delivery: Conventional vs non-conventional formulations for intestinal flora supplementation. The Association of Pharmaceutical Scientists Journal, 15(1): 29-43.
  • Granato, D., Branco, G.F., Cruz, A.G., Faria, J.A.F. and Shah, N.P. (2010b). Probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, 9(5): 455-470.
  • Granato, D., Branco, G.F., Nazzaro, F., Cruz, A.G. and Faria, J.A. (2010a). Functional foods and nondairy probiotic food development: trends, concepts, and products. Comprehensive Reviews in Food Science and Food Safety, 9(3): 292-302.
  • Guo, M., Fang, H., Wang, R., Yang, Z. and Xu, X. (2011). Electrodeposition of chitosan-glucose oxidase biocomposite onto Pt–Pb nanoparticles modified stainless steel needle electrode for amperometric glucose biosensor. Journal of Materials Science: Materials in Medicine, 22(8): 1985-1992.
  • Hanft, F. and Koehler, P. (2006). Studies on the effect of glucose oxidase in bread making. Journal of the Science of Food and Agriculture, 86(11): 1699-1704.
  • Heck, T., Faccio, G., Richter, M. and Thöny-Meyer, L. (2013). Enzyme-catalyzed protein crosslinking. Applied Microbiology and Biotechnology, 97(2): 461-475.
  • Hiller, B. and Lorenzen, P.C. (2009). Functional properties of milk proteins as affected by enzymatic oligomerisation. Food Research International, 42(8): 899-908.
  • Horiuchi, H., Inoue, H., Liu, E., Fukui, M., Sasaki, Y. and Saaki T. (2009). A method for manufacturing superior set yogurt under re-duced oxygen concentration. Journal of Dairy Science, 92(9): 4112-4121.
  • Hu, S., Lu, Q. and Xu, Y. (2008). Biosensors Based On Direct Electron Transfer Of Protein. Electrochemical Sensors, Biosensors and Their Biomedical Applications, 1st ed., Eds: X. Zhang, H. Ju, J. Wang. Academic Press, USA, pp. 531-581.
  • Isaksen, A. and Adler-Nissen, J. (1997). Antioxidative effect of glucose oxidase and catalase in mayonnaises of different oxidative susceptibility. I. Product trials. LWT-Food Science and Technology, 30(8): 841-846.
  • Isaschar-Ovdat, S. and Fishman, A. (2018). Crosslinking of food proteins mediated by oxidative enzymes–A review. Trends in Food Science and Technology, 72: 134-143.
  • Jeanson, S., Hilgert, N., Coquillard, M.O., Seukpanya, C., Faiveley, M., Neveu, P., Abraham, C., Georgescu, V., Fourcassie, P. and Beuvier, E. (2009). Milk acidification by Lactococcus lactis is improved by decreasing the level of dissolved oxygen rather than decreasing redox potential in the milk prior to inoculation. International Journal of Food Microbiology, 131(1): 75-81.
  • Kang, S.I. and Bae, Y.H. (2003). A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. Journal of Controlled Release, 86(1): 115-121.
  • Kemp, S.E. (2008). Application of sensory evaluation in food research. International Journal of Food Science and Technology, 43(9): 1507-1511. Leiter, E., Marx, F., Pusztahelyi, T., Haas, H. and Pocsi, I. (2004). Penicillium chrysogenum glucose oxidase–a study on its antifungal effects. Journal of applied microbiology, 97(6): 1201-1209.
  • Leskovac, V., Trivić, S., Wohlfahrt, G., Kandrač, J. and Peričin D. (2005). Glucose oxidase from Aspergillus niger: The mechanism of action with molecular oxygen, quinones, and one-electron acceptors. The İnternational Journal of Biochemistry and Cell Biology, 37(4): 731-750.
  • Li, Q., Chen, Q., Ruan, H., Zhu, D. and He, G. (2010). Isolation and characterisation of an oxygen, acid and bile resistant Bifidobacterium animalis subsp. lactis Qq08. Journal of the Science of Food and Agriculture, 90(8): 1340-1346.
  • Madhu, A. and Chakraborty, J.N. (2019). Bio-bleaching of cotton with H2O2 generated from native and immobilized glucose oxidase. AATCC Journal of Research, 6(2): 7-17.
  • Marks, N.E., Grandison, A.S. and Lewis, M.J. (2001). Challenge testing of the lactoperoxidase system in pasteurized milk. Journal of Applied Microbiology, 91(4): 735-741.
  • Mazeiko V., Kausaite-Minkstimiene A., Ramanaviciene A., Balevicius Z. and Ramanavicius A. (2013). Gold nanoparticle and conducting polymer –polyaniline -based nanocomposites for glucose biosensor design. Sensors and Actuators B: Chemical, 189: 187-193.
  • Mohammadi, R., Rouhi, M. and Mortazavian A.M. (2011). Effects of music waves on fermentation characteristics and viability of starter cultures in probiotic yogurt. Milchwissenschaft-Milk Science International, 66(2): 193-196.
  • Muller, D. (1928). Oxidation von glukose mit extrakten aus Aspegillus niger. Biochemistry, 199: 136-170.
  • Ozyilmaz G. and Tukel S.S. (2007). Simultaneous co-immobilization of glucose oxidase and catalase in their substrates. Applied Biochemistry and Microbiology, 43(1): 29-35.
  • Ozyilmaz, G. (2019). Glucose Oxidase applications and comparison of the activity assays. Natural and Engineering Sciences, 4(3): 253-267.
  • Ozyurek, M.B. and Ozcan, T. (2020). Mechanisms of psychobiotic effect and gut microbiota. International Journal of Science, Technology and Design, 1(1): 59-77.
  • Özcan, T. ve Akpınar-Bayizit, A. (2020). Probiyotik Kültürlerin Muhafazası. Probiyotik Yüz Yılı, 1st ed., Eds: M. Akçelik, P. Şanlıbaba, N. Akçelik, B.U. Tezel. Gazi Kitabevi, Ankara, pp. 247-293.
  • Parpinello, G.P., Chinnici, F., Versari, A. and Riponi, C. (2002). Preliminary study on glucose oxidase–catalase enzyme system to control the browning of apple and pear purées. LWT-Food Science and Technology, 35(3): 239-243.
  • Plessas, S., Bosnea, L., Alexopoulos, A. and Bezirtzoglou, E. (2012). Potential effects of probiotics in cheese and yogurt production: A review. Engineering in Life Sciences, 12(4): 433-440.
  • Qui, F., Li F.Y. and Yang, Q.Y. (2017). Preparartion of magnetic immobilized glucose oxidase and bleaching of cotton fabrics. Textile Bioengineering and Informatics Symposium Proceedings, 3: 829-835.
  • Ranadheera, C.S., Evans, C.A., Adams, M.C. and Baines, S.K. (2013). Production of probiotic ice cream from goat’s milk and effect of packaging materials on product quality. Small Ruminant Research, 112(1-3): 174-180.
  • Reis, C.Z., Fogolari, O., Oliveira, D., De Arruda Guelli Ulson de Souza, S.M. and De Souza, A.A.U. (2017). Bioscouring and bleaching of knitted cotton fabrics in one-step process using enzymatically generated hydrogen peroxide. The Canadian Journal of Chemical Engineering, 95(11): 2048-2055.
  • Rodrigues, D., Rocha-Santos, T., Sousa, S., Gomes, A.M., Pintado, M., Xavier Malcata, F., Sousa Lobo, J.M., Silva, J.P., Costa, P., Hamaral, M. and Freitas, A. (2011). On the viability of five probiotic strains when immobilised on various polymers. International Journal of Dairy Technology, 64(1): 137-144.
  • Ruiz, E., Busto, M.D., Ramos-Gómez, S., Palacios, D., Pilar-Izquierdo, M.C. and Ortega, N. (2018). Encapsulation of glucose oxidase in alginate hollow beads to reduce the fermentable sugars in simulated musts. Food Bioscience, 24: 67-72.
  • Salimi, A. and Noorbakhsh, A. (2011). Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: fabrication of glucose biosensor. Electrochimica Acta, 56(17): 6097-6105.
  • Seifu, E., Buys, E.M. and Donkin, E.F. (2005). Significance of the lactoperoxidase system in the dairy industry and its potential applications: Areview. Trends in Food Science and Technology, 16(4): 137-154.
  • Shafiee, G., Mortazavian, A.M., Mohammadifar, M.A. Koush-ki, M.R., Mohammadi, A. and Mohammadi, R. (2010). Combined effects of dry matter content, incubation temperature and final pH of fermentation on biochemical and microbiological characteristics of probiotic fermented milk. African Journal of Microbiology Research, 4(12): 1265-1274.
  • Sisak, C., Csanádi, Z., Rónay, E. and Szajáni, B. (2006). Elimination of glucose in egg white using immobilized glucose oxidase. Enzyme and Microbial Technology, 39(5): 1002-1007.
  • Valencia P., Espinoza K., Ramirez C., Franco W. and Urtubia A. (2017). Technical feasibility of glucose oxidase as a prefermentation treatment for lowering the alcoholic degree of red wine. American Journal of Enology and Viticulture, 68(3): 386-389.
  • Wang, L., Gao, X., Jin, L., Wu, Q., Chen, Z. and Lin, X. (2013). Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sensors and Actuators B, 176: 9-14.
  • Wong, C.M., Wong, K.H. and Chen, X.D. (2008). Glucose oxidase: Natural occurrence, function, properties and industrial applications. Applied Microbiology and Biotechnology, 78(6): 927-938.
  • Xu, D., Sun, L., Li, C., Wang, Y. and Ye, R. (2018). Inhibitory effect of glucose oxidase from Bacillus sp. CAMT22370 on the quality deterioration of Pacific white shrimp during cold storage. LWT- Food Science and Technology, 92: 339-346.
  • Zago, M., Massimiliano, L., Bonvini, B., Penna, G., Giraffa, G. and Rescigno, M. (2021). Functional characterization and immunomodulatory properties of Lactobacillus helveticus strains isolated from Italian hard cheeses. Plos One, 16(1): 1-13.
  • Zhao, X.H. and D. Li. (2008). A new approach to eliminate stress for two probiotics with chemicals in vitro. Europian Food Research and Technology, 227(5): 1569-1574.