Fonksiyonel Nitelikteki Yenilebilir Bazı Çiçeklerin Yağ Asidi Profilinin Gaz Kromatografi-Alev İyonizasyon Dedektörü (GC-FID) ile Belirlenmesi

sayi26-6.pdf (1 B)

Fonksiyonel Nitelikteki Yenilebilir Bazı Çiçeklerin Yağ Asidi Profilinin Gaz Kromatografi-Alev İyonizasyon Dedektörü (GC-FID) ile Belirlenmesi

Amaç: Tüketilen gıda ile sağlık arasındaki ilişkinin farkındalığının artması sonucunda, ürün çeşitlenmesi ve pazar talebinin çoğalmasıyla; fonksiyonel ürün pazarı sürekli büyüme göstermektedir. Bu bağlamda yenilebilir çiçekler; besin değerleri ve biyoaktif bileşenleri ile gün geçtikçe daha fazla ilgi çekmektedir. Bu çalışmada, fonksiyonel özellikleri nedeniyle popülerliği son zamanda artış gösteren yenilebilir çiçeklerden “kadife” ve “şebboy” çiçek çeşitlerinin yağ asidi profilinin incelenmesi amaçlanmıştır.

Materyal ve yöntem: Bursa Uludağ Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümü’nün seralarından temin edilen çiçekler, soğuk estraksiyona tabi tutulup yağ eldesi gerçekleştirildikten sonra IUPAC yöntemine göre soğuk esterleşmeleri yapılmıştır. GC-FID ile elde edilen sonuçlar w/w (%) toplam yağ asidi olarak ifade edilmiştir.

Bulgular ve sonuç: Doymuş, tekli doymamış ve çoklu doymamış yağ asidi miktarları, 6 kadife çiçeği (Tagetes erecta) çeşidi ile 2 şebboy çiçek (Matthiola incana) çeşidi için belirlenmiştir. Şebboy çiçeği çeşitlerinin daha yüksek oranda tekli ve çoklu doymamış yağ içeriğine sahip olduğu, doymuş yağ asidi bakımından ise kadife çiçeklerinin oldukça yüksek içeriğe sahip oldukları görülmüştür.

 

References

  • Acar, M.B., İbiş Karadaş, E., Şimşek, A., Vural, C., Tez, C. and Özcan, S. (2020). Evaluation of Achillea millefolium essential oil compounds and biological effects on cervix cancer HeLa cell line. The EuroBiotech Journal, 4(1), 17-24.
  • Akpınar-Bayizit, A. (2003). Doymamış yağ asitlerinin beslenme ve sağlık açısından önemi. Gıda ve Yem Bilimi – Teknolojisi Dergisi, 2(3), 28-31.
  • Alasalvar, C., Pelvan, E., Özdemir, K.S., Kocadağlı, T., Mogol, B.A., Paslı, A.A., Özcan, N., Özçelik, B. and Gökmen, V. (2013). Compositional, nutritional, and functional characteristics of instant teas produced from low and high quality black teas. Journal of Agricultural and Food Chemistry, 61(31), 7529-36.
  • Ali, N.A.A., Sharopov, F.S., Al-kaf, A.G., Hill, G.M., Arnold, N., Al-Sokari, S.S., Setzer, W.M. and Wessjohann, L. (2013). Composition of essential oil from Tagetes minuta and its cytotoxic, antioxidant and antimicrobial activities. Natural Product Communications, 9(0), 1-4.
  • Alzoreky, N.S. and Nakahara, K. (2003). Antibacterial activity of extracts from some edible plants commonly consumed in Asia. International Journal of Food Microbiology, 80(3), 223-230.
  • Andrea, B., Dumitrița, R., Florina, C., Francis, D., Anastasia, V., Socaci, S. and Adela, P. (2020). Comparative analysis of some bioactive compounds in leaves of different Aloe species. BMC Chemistry, 14, 67-78.
  • Anonymous (1987). IUPAC Standard Methods for Analysis of Oils, Fats and Derivatives. seventh ed. Blackwell Scientific Publications. IUPAC Method 2.301; Report of IUPAC Working Group WG 2/87.
  • Aquino-Bolaños, E.N., Urrutia-Hernandez, T.A., Lopez del Castillo-Lozano, M., Chavez-Servia, S. and Verdalet-Guzman, I. (2013). Physiochemical parameter and antioxidant compounds in edible squash (Cucurbita pepo) flower stored under controlled atmospheres. Journal of Food Quality, 36(5), 302-308.
  • Armas, K., Rojas, J., Rojas, L. and Morales, A. (2012). Comparative study of the chemical composition of essential oils of five Tagetes species collected in Venezuela. Natural Product Communications, 7(9), 1225-1226.
  • Atanasova, T., Kakalova, M., Stefanof, L., Petkova, M., Stoyanova, A., Petkova, M., Damyanova, S. and Desyk, M. (2016). Chemical composition of essential oil from Rosa Damascena mill., growing in new region of Bulgaria. Ukrainian Food Journal, 5(3), 492-498.
  • Barros, L., Carvalho, A.M. and Ferreira, I.C.F.R. (2010). Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chemistry and Toxicology, 48, 1466-1472.
  • Bungihan, M.E. and Matias, C.A. (2013). Determination of the antioxidant, phytochemical and antibacterial profiles of flowers from selected ornamental plants in Nueva Vizcaya, Philippines. Journal of Agricultural Science and Technology, 3, 833-841.
  • Chalchat, J.C. and Ozcan, M.M. (2008). Comparative essential oil composition of flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food Chemistry, 110, 501-503. Chamorro, E.R., Ballerini, G., Sequeira, A.F., Velasco, G.A. and Zalazar, M.F. (2008). Chemical composition of essential oil from Tagetes minuta L. leaves and flowers. Journal of the Argentine Chemical Society, 96, 80-86.
  • Choi, H.S. and Kim, G.H. (2011). Volatile flavor composition of gamguk (Chrysanthemum indicum) flower essential oils. Food Science and Biotechnology, 20(2), 319-325. Das, B.K., Choudhury, B.K. and Kar, M. (2010). Quantitative estimation of changes in biochemical constituents of mahua (Madhuca indica syn. Bassia latifolia) flowers during postharvest storage. Journal of Food Processing and Preservation, 34, 831-844.
  • Dixit, P., Tripathi, S. and Verma, K.N. (2013). A brief study on Marigold (Tagetes species). International Research Journal of Pharmacy, 4(1), 43-48. Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A. and Ramalhosa, E. (2017). Edible flowers: a review of the nutritional, antioxidant, antimicrobial properties and effects on human health. Journal of Food Composition and Analysis, 60, 38-50.
  • Fernandes, L., Ramalhosa, E., Pereira, J.A., Saraiva, J.A. and Casal, S. (2018). The unexplored potential of edible flowers lipids. Agriculture, 8(10), 146-168.
  • Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A. and Ramalhosa, E. (2019). An overview on the market of edible flowers. Food Reviews International, 36(2), 1-18.
  • Folch, J., Lees M. and Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226, 497-509.
  • Garzon, G.A., Manns, D.C., Riedl, K., Schwartz, S.J. and Zakour-Padilla, O. (2015). Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high-performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC). Journal of Agricultural and Food Chemistry, 63, 1803-1811.
  • Gazim, Z.C., Rezende, C.M., Fraga, S.R., Filho, B.P.D., Nakamura, C.V. and Cortez, D.A.G. (2008a). Analysis of the essential oils from Calendula officinalis growing in Brazil using three different extraction procedures. Revista Brasileira de Ciências Farmacêuticas (Brazilian Journal of Pharmaceutical Sciences), 44(3), 391-395.
  • Gazim, Z.C., Rezende, C.M., Fraga, S.R., Svidzinski, T.I.E. and Cortez, D.A.G. (2008b). Antifungal activity of the essential oil from Calendula officinalis L. (Asteraceae) growing in Brazil. Brazian Journal of Microbiology, 39, 61-63.
  • Glew, R.H., VanderJagt, D.J., Lockett, C., Grivetti, L.E., Smith, G.C., Pastuszyn, A. and Millson, M. (1997). Amino acid, fatty acid, and mineral composition of 24 indigenous plants of Burkina Faso. Journal of Food Composition and Analysis, 10, 205-217.
  • González-Barrio, R., Periago, M.J., Luna-Recio, C., Javier, G.F. and Navarro-González, I. (2018). Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chemistry, 252, 373-380.
  • Guimarães, R., Barros, L., Carvalho, A.M. and Ferreira, I.C.F.R. (2010). Studies on chemical constituents and bioactivity of Rosa micrantha: an alternative antioxidants source for food, pharmaceutical, or cosmetic applications. Journal of Agricultural and Food Chemistry, 58, 6277-6284.
  • Han, X.B., Zhao, J., Cao, J.M. and Zhang, C.S. (2019). Essential oil of Chrysanthemum indicum L.: potential biocontrol agent against plant pathogen Phytophthora nicotianae. Environmental Science and Pollution Research, 26, 7013-7023.
  • Heuer, B., Yaniv, Z. and Ravina, I. (2002). Effect of late salinization of chia (Salvia hispanica), stock (Matthiola tricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality. Industrial Crops and Products, 15, 163-167.
  • Heuer, B., Ravina, I. and Davidov, S. (2005). Seed yield, oil content, and fatty acid composition of stock (Matthiola incana) under saline irrigation. Australian Journal of Agricultural Research, 56(1), 45-47.
  • Ingkasupart, P., Manochai, B., Song, W.T. and Hong, J.H. (2015). Antioxidant activities and lutein content of 11 Marigold cultivars (Tagetes spp.) grown in Thailand. Food Science Technology, 35(2), 380-385.
  • oshi, R.K. (2014). Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Ancient Science of Life, 33(3), 151-156.
  • Kaisoon, O., Siriamornpun, S., Weerapreeyakul, N. and Meeso, N. (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. Journal of Functional Foods, 3, 88-99.
  • Karaman, S., Gulseven, M., Comlekcioglu, N. and Ilcim, A. (2011). Fatty acid composition of Matthiola longipetala ssp. bicornis from Turkey. International Journal of Agriculture & Biology, 13(4), 581-585. Kaur, G., Alam M.S., Jabbar, Z., Javed K. and Athar, M. (2006). Evaluation of antioxidant activity of Cassia siamea flowers. Journal of Ethnopharmacology, 108(3), 340-348.
  • Kumar, R. and Dayal, R. (2012). Chemical examination of fatty oil of Tagetes minuta seeds. Journal of Livestock Science and Technologies, 44(2), 57-59.
  • Li, A. N., Li, S., Li, H. B., Xu, D. P., Xu, X. R. and Chen, F. (2014). Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. Journal of Functional Foods, 6, 319-330.
  • Loizzo, M.R., Pugliese, A., Bonesi, M., Tenuta, M.C., Menichini, F., Xiao, J. and Tundis, R. (2016). Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties. Journal of Agricultural and Food Chemistry, 64(12), 2467-2474.
  • Mahgoub, M.H., Aziz, N.G.A., Youssef, A.A. and Almselati, A.S.I. (2011). Growth parameters, yield and chemical composition of Matthiola incana plants as influenced by foliar spray with stigmasterol and diphenylurea. Journal of Applied Sciences Research, 7(11), 1575-1582.
  • Miceli, N., Cavò, E., Ragusa, S., Cacciola, F., Dugo, P., Mondello, L., Marino, A., Cincotta, F., Condurso, C. and Taviano, M.F. (2019) Phytochemical characterization and biological activities of a hydroalcoholic extract obtained from the aerial parts of Matthiola incana (L.) R. Br. subsp. Incana (Brassicaceae) growing wild in Sicily (Italy). Chemistry & Biodiversity, 16, e1800677.
  • Miguel, M., Barros, L., Pereira, C., Calhelha, R.C., Garcia, P.A., Castro, M.Á., Santos-Buelga, C. and Ferreira, I.C.F.R. (2016). Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves). Food & Function, 7, 2223-2232. Mlcek, J. and Rop, O. (2011). Fresh edible flowers of ornamental plants a new source of nutraceutical foods. Trends in Food Science and Technology, 22, 561-569.
  • Moliner, C., Barros, L., Dias, M. I., López, V., Langa, E., Ferreira, I.C.F.R. and Gómez-Rincón, C. (2018). Edible Flowers of Tagetes erecta L. as Functional Ingredients: Phenolic Composition, Antioxidant and Protective Effects on Caenorhabditis elegans. Nutrients, 10(12), 2002-2016.
  • Navarro-González, I., González-Barrio, R., García-Valverde, V., Bautista-Ortín, A.B. and Periago, M.J. (2015). Nutritional composition and antioxidant capacity in edible flowers: characterisation of phenolic compounds by HPLC-DAD-ESI/MS. International Journal of Molecular Science, 16, 805-822.
  • Nelson, S. (2019). The antibacterial activity of essential oils from Tagetes erecta and Thuja occidentalis. Cantaurus, 27, 29-33.
  • Özkan, Y. (2018). Tagetes erecta L. (Kadife Çiçeği)’nin Kimyasal Yapısı ve Antioksidan Kapasitesi. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, s. 80.
  • Patel, M. and Naik, S.N. (2010). Flowers of Madhuca indica J.F. Gmel, present status and future perspectives. Indian Journal of Food Products and Resorces, 1, 438-443. Pereira, A.M., Cruz, R.R.P., Gadelha, T.M., Silva, A.G.F., Costa, F.B. and Ribeiro, W.S. (2020). Edible flowers: beauty, health and nutrition. Research, Society and Development, 9(7), 1-21.
  • Pires, T.C.S.P., Dias, M.I., Barros, L. and Ferreira, I.C.F.R. (2017). Nutritional and chemical characterization of edible petals and corresponding infusions: valorization as new food ingredients. Food Chemistry, 220, 337-343.
  • Raal, A., Orav, A. and Arak, E. (2012). Essential oil content and composition in commercial Achillea millefolium L. herbs from different countries. Journal of Essential Oil Bearing Plants, 15(1), 22-31.
  • Raal, A., Orav, A., Nesterovitsch, J. and Maidla, K. (2016). Analysis of carotenoids, flavonoids and essential oil of Calendula officinalis cultivars growing in Estonia. Natural Product Communications, 11(8), 1157-1160.
  • Rao, G.N., Rao, P.G.P. and Satyanarayana, A. (2014). Chemical, fatty acid, volatile oil composition and antioxidant activity of shade dried neem (Azadirachta indica L.) flower powder. International Food Research Journal, 21, 807-813.
  • Rathore, S., Walia, S. and Kumar, R. (2018). Biomass and essential oil of Tagetes minuta influenced by pinching and harvesting stage under high precipitation conditions in the western Himalayas. Journal of Essential Oil Research, 30(5), 360-368.
  • Rezig, L., Chouaibi, M., Msaada, K. and Hamdi, S. (2012). Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products, 37, 82-87.
  • Salehi, B., Valussi, M., Morais-Braga, M.F.B., Pereira Carneiro, J.N., Leal, A.L.A.B., Coutinho, H.D.M., Vitalini, S., Kręgiel, D., Antoalk, H., Sharifi-Rad, M., Silva, N.C.C., Yousaf, Z., Martorell, M., Iriti, M., Carradori, S. and Sharifi-Rad, J. (2018). Tagetes spp. essential oils and other extracts: chemical characterization and biological activity. Molecules, 23, 2847-2882.
  • Sánchez-Machado, D.I., Núñez-Gastélum, J.A., Reyes-Moreno, C., Ramírez-Wong, B. and López-Cervantes, J. (2010). Nutritional quality of edible parts of Moringa oleifera. Food Analytical Methods, 3, 175-180.
  • Sassi, A.B., Skhiri, F.H., Chraief, I., Bourgougnon, N., Hammami, M. and Aouni, M. (2014). Essential oils and crude extracts from Chrysanthemum trifurcatum leaves, stems and roots: chemical composition and antibacterial activity. Journal of Oleo Science, 63(6), 607-617.
  • Singh, G., Singh, O.P., Lampasona, M.P. & Catal, C.A.N. (2003). Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour and Fragrance Journal, 18: 62-65.
  • Singh, P., Krishna, A., Kumari V., Krishna, S., Singh, K., Gupta, M. and Singh, S. (2016). Chemistry and biology of industrial crop Tagetes species: a review. Journal of Essential Oil Research, 28(1), 1-14.
  • Šivel, M., Kráčmar, S., Fišera, M., Klejdus, B. and Kubáň, V. (2014). Lutein content in Marigold flower (Tagetes erecta L.) concentrates used for production of food supplements. Czech Journal of Food Science, 32(6), 521-525.
  • Sotelo, A., López-García, S. and Basurto-Peña, F. (2007). Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods for Human Nutrition, 62, 133-138. Sowbhagya, H.B., Sampathu, S.R. and Krishnamurthy, N. (2004). Natural colorant from marigold-chemistry and technology. Food Reviews International, 20(1), 33-50.
  • Taviano, M.F., Miceli, N., Acquaviva, R., Malfa, G.A., Ragusa, S., Giordano, D., Cásedas, G., Les, F. and López, V. (2020) Cytotoxic, antioxidant, and enzyme inhibitory properties of the traditional medicinal plant Matthiola incana (L.) R. Br. Biology, 9(163), 1-12.
  • Toncer, O., Karaman, S., Diraz, E. and Tansi, S. (2017). Essential oil composition of Ocimum basilicum L. at different phenological stages in semi-arid environmental conditions. Fresenius Environmental Bulletin, 26(8), 5441-5446.
  • Velasco, L. and Goffman, F.D. (1999). Chemotaxonomic significance of fatty acids and tocopherols in Boraginaceae. Phytochemistry, 52, 423–426.
  • Verma, R.S., Chandra, P.R., Amit, C., Anand, S. and Yadav, A.K. (2011). Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from North Indian hills. Natural Product Research, 25(17), 1577-1584.
  • Vieira, P.M. (2013). Avaliação da Composição Química, dos Compostos Bioativos e da Atividade Antioxidante em seis Espécies de Flores Comestíveis. Master’s Thesis, Universidade Estadual Paulista, São Paulo, Brazil.
  • Yaniv, Z., Schafferman, D., Zur, M. and Shamir, I. (1997). Evalution of Matthiola incana as a source of omega-3-linolenic acid. Industrial Crops and Products, 6, 285-289 Younis, Y.M.H., Ghirmay, S. and Al-Shihry, S.S. (2000). African Cucurbita pepo L.: Properties of seed and variability in fatty acid composition of seed oil. Phytochemistry, 54, 71-75. Zeng, Y., Deng, M., Lv, Z. and Peng, Y. (2014). Evaluation of antioxidant activities of extracts from 19 Chinese edible flowers. SpringerPlus, 3(1), 315-320.
  • Zorbaz, D. (2020). Matthiola incana L. (Şebboy Çiçeği)’nin Fizikokimyasal Yapısı ve Antioksidan Potansiyeli. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa. s. 74.